Automating the weekly audit of publicly accessible S3 buckets
Why is a weekly review of the company’s publicly accessible S3 buckets necessary?
To address this question, I will outline the top five risks associated with exposing a public S3 bucket.
Top 5 Risks of Exposing a Public S3 Bucket
- Data Breaches – Unauthorized users can access sensitive data, leading to leaks of personal, financial, or proprietary information.
- Malware Distribution – Attackers can upload and serve malicious files from the bucket, tricking users into downloading compromised content.
- Data Tampering – If write permissions are misconfigured, attackers can modify or delete files, leading to data integrity issues.
- Credential Exposure – Publicly accessible configuration files, API keys, or credentials stored in the bucket can be exploited for further attacks.
- Compliance Violations – Exposing regulated data (e.g., PII, financial records) can result in legal penalties and non-compliance with industry standards like GDPR, HIPAA, or PCI DSS.
Here are some notable examples of companies that suffered data breaches due to misconfigured public S3 buckets:
- Capital One (2019) – A misconfigured S3 bucket exposed sensitive data of over 100 million customers, including Social Security numbers and bank account details.
- Facebook (2019) – Third-party app developers left 540 million Facebook user records exposed in public S3 buckets, including account names and comments.
- Verizon (2017) – A security lapse by a third-party vendor exposed 14 million Verizon customer records, including phone numbers and account PINs.
- Accenture (2017) – A publicly accessible S3 bucket contained sensitive internal data, including passwords and secret API keys, posing a major risk.
- GoDaddy (2018) – Public S3 bucket misconfiguration exposed configuration files, putting millions of customers at risk of service disruption and phishing attacks.
These incidents highlight the importance of regularly reviewing S3 bucket permissions to prevent unauthorized data access. 🚨
Implementation Plan:
- Schedule a Kubernetes job to run weekly.
- Use AWS IAM Analyzer to detect publicly accessible S3 buckets.
- Deliver the results to a designated Slack channel.
1. Create the Trusted Policy JSON File
First, create a trusted policy that allows a Kubernetes Service Account to assume this role.
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Federated": "arn:aws:iam::<AWS_ACCOUNT_ID>:oidc-provider/<OIDC_PROVIDER>"
},
"Action": "sts:AssumeRoleWithWebIdentity",
"Condition": {
"StringEquals": {
"<OIDC_PROVIDER>:sub": "system:serviceaccount:s3-analyzer:s3-analyzer-sa"
}
}
}
]
}
Replace:
-
with your AWS account ID. -
with your EKS OIDC provider URL (find it using aws eks describe-cluster --name --query "cluster.identity.oidc.issuer" --output text). - Ensure the serviceaccount matches the one used in your Kubernetes job.
2. Create the IAM Role (s3-analyzer-role)
Run the following command to create the IAM role with the trust policy:
aws iam create-role \
--role-name s3-analyzer-role \
--assume-role-policy-document file://trust-policy.json
✔️ This creates the role and applies the trust policy, allowing Kubernetes workloads to assume it.
3. Create IAM Permissions for the Role
Now, create an IAM policy that grants access to IAM Access Analyzer and S3 permissions.
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"access-analyzer:ListFindings",
"access-analyzer:GetFinding"
],
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListAllMyBuckets",
"s3:GetBucketAcl"
],
"Resource": "*"
}
]
}
4. Create and Attach the Policy
- Create the policy:
aws iam create-policy --policy-name s3-analyzer-policy --policy-document file://iam-policy.json
This returns a policy ARN (e.g., arn:aws:iam::
- Attach the policy to the role:
aws iam attach-role-policy \
--role-name s3-analyzer-role \
--policy-arn arn:aws:iam::<AWS_ACCOUNT_ID>:policy/s3-analyzer-policy
5. Verify the Role
To confirm the role and its permissions, run:
aws iam get-role --role-name s3-analyzer-role
aws iam list-attached-role-policies --role-name s3-analyzer-role
Now, your Kubernetes CronJob can assume the IAM role and run AWS Access Analyzer to check for public S3 buckets.
6. Create a Kubernetes CronJob
The following Kubernetes CronJob will execute a script once a week to run IAM Access Analyzer and send the results to a Slack channel.
k8s-cronjob.yaml
apiVersion: batch/v1
kind: CronJob
metadata:
name: s3-analyzer
namespace: s3-analyzer
spec:
schedule: "0 0 * * 0" # Runs every Sunday at midnight UTC
jobTemplate:
spec:
template:
spec:
serviceAccountName: s3-analyzer-sa # Ensure this SA has IAM permissions
restartPolicy: Never
tolerations:
- key: CriticalAddonsOnly
operator: Exists
containers:
- name: iam-analyzer
image: amazon/aws-cli:latest
command:
- /bin/sh
- -c
- |
echo "Running AWS IAM Access Analyzer..."
# Run the analyzer to list public buckets
aws accessanalyzer list-findings \
--analyzer-arn "$ANALYZER_ARN" \
--filter '{"resourceType": {"eq": ["AWS::S3::Bucket"]}, "isPublic": {"eq": ["true"]}}' \
--region us-east-1 \
--query "findings[*].resource" > findings.json
# Send findings to Slack if there are public buckets
if [ -s findings.json ]; then
# install jq
yum install -y jq
jq --version
export BUCKETS=$(cat findings.json | jq -r '. | join("\n")')
echo "\nPublic buckets discovered: $BUCKETS\nSending results to Slack..."
curl -X POST -H 'Content-type: application/json' \
--data "{\"text\": \"AWS IAM Access Analyzer detected public S3 buckets:\n$BUCKETS\"}" \
$SLACK_WEBHOOK_URL
else
echo "No public S3 Buckets found."
fi
env:
- name: AWS_REGION
value: "us-east-1"
- name: SLACK_WEBHOOK_URL
valueFrom:
secretKeyRef:
name: slack-webhook
key: url # Store your Slack webhook in a Kubernetes Secret
- name: ANALYZER_ARN
valueFrom:
secretKeyRef:
name: analyzer-arn
key: arn # Store your analyzer's arn in a Kubernetes Secret
Notes
- AWS_REGION: put proper AWS region
- ANALYZER_ARN: to get analyzer ARN run in console: ‘aws accessanalyzer list-analyzers –query “analyzers[*].arn” –output text’
- SLACK_WEBHOOK_URL: The webhook URL follows this format - https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX
7. Create the Kubernetes Service Account
This service account will assume an IAM role with permissions to run the IAM Access Analyzer. k8s-serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: s3-analyzer-sa
namespace: s3-analyzer
annotations:
eks.amazonaws.com/role-arn: "arn:aws:iam::<AWS_ACCOUNT_ID>:role/s3-analyzer-role"
8. Apply the Kubernetes Resources
Once your AWS IAM role and permissions are set up, apply the Kubernetes configurations:
create k8s secret for slack-webhook
kubectl create secret generic slack-webhook \
--from-literal=url=<YOUR_WEBHOOK_URL> \
--namespace s3-analyzer
“To Set Up a Slack Webhook:
- Go to your Slack workspace and create an Incoming Webhook:
- Open Slack → Apps → Incoming Webhooks (Slack Webhook Setup)
- Create a new webhook and choose a Slack channel where alerts will be sent.
- Copy the Webhook URL”
- The webhook URL follows this format: https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX
create k8s secret for analyzer-arn
kubectl create secret generic analyzer-arn \
--from-literal=arn=<ANALYZER_ARN> \
--namespace s3-analyzer
kubectl apply -f k8s-serviceaccount.yaml
kubectl apply -f k8s-cronjob.yaml
9. Verifying the CronJob
To check the logs and verify that it ran correctly:
kubectl get cronjobs
kubectl get pods --selector=job-name=s3-public-check
kubectl logs <pod-name>
Thank you for reading, I hope you enjoyed it, see you in the next post.
Please subscribe to my twitter, to be notified when the next tutorial is published.
‘devsecops on steroids’ also can be found in: repo